Closing Tues: 3.10
Closing Thurs: 4.1(1) and 4.1(2)
Exam 1 is next Tuesday!
covers 3.1-3.6, 3.9-3.10, 10.2, 4.1
3.10 Linear Approx. (continued) Recall:
Given a point (x_{0}, y_{0}) and a curve. The tangent line at the point can be thought of as a linear approximation:

$$
y=m\left(x-x_{0}\right)+y_{0}
$$

where $m=\frac{d y}{d x}$ at the point.

Entry Task:
Using tangent line approximation to estimate the value of $\sqrt[3]{8.5}$.

Note the function is $f(x)=\sqrt[3]{x}$. Use the "nice" nearby value of x.

Example (from HW):
A cone with height h and base radius r has total surface area:

$$
S=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}
$$

You start with $h=8$ and $r=6$, and you want to change the dimensions in such a way that the total surface area remains constant.

Suppose the height increases by $26 / 100$.

In this problem, use tangent line approximation to estimate the new value of r so that the new cone has the same total surface area.

Example (from HW):
Suppose that a and b are pieces of metal which are hinged at C.

You always have ('law of sines")

$$
\frac{b}{a}=\frac{\sin (B)}{\sin (A)}
$$

Initially:
angle A is $\pi / 4$ radians $=45^{\circ}$ and
angle B is $\pi / 3$ radians $=60^{\circ}$.
You then widen A to 46°, without changing the sides a and b. Use the linear approximation to estimate the new angle B.

4.1: Critical Points and

 Absolute Max/MinGiven $y=f(x)$.
The first questions we always ask:

1. What is the domain?
(What inputs are allowed?)
2. What are the "critical numbers"?

A critical number is a number $x=a$ that is in the domain and either
(a) $f^{\prime}(a)=0$, or
(b) $f^{\prime}(a)$ does not exist.

Example (from homework):

$$
y=x^{3}+3 x^{2}-72 x
$$

a) What is the domain?
b) What are the critical numbers?

Example:

$$
f(x)=4 x+\frac{1}{x}
$$

a) What is the domain?
b) What are the critical numbers?

Example:

$$
g(x)=3 x-x^{1 / 3}
$$

a) What is the domain?
b) What are the critical numbers?

[^0]Procedure to find absolute \max / min :

1. Find critical numbers.
2. Plug endpoints and critical numbers into the function.

Example (like HW):

Find the abs. max and min of

$$
f(x)=x^{3}+3 x^{2} \text { on }[-1,2] .
$$

Small Note:
The value of a function, $y=f(x)$, is the output y-value. A question asking for the absolute max of a function is asking for the y-value.
(The x-value is the location where the max occurs)

Example:
Find the abs. max and min of
$f(x)=x \ln (x)$ on $[1, e]$.

Example:
Find the abs. max and min of
$f(x)=x \sqrt{1-x}$ on $[-1,1]$.

[^0]: Absolute Max/Min
 The absolute max (or global max) is the highest y-value on the interval. The absolute $\mathbf{m i n}$ (or global min) is

 ## Big, key, awesome observation:

 (Extreme Value Theorem)
 The absolute max/min always occur
 at critical numbers or endpoints!

